Databricks Tutorial

Databricks is a modern big data processing technology and acts as a one-stop solution for all organizational data needs such as data warehousing, AI, machine learning, data visualization, operational use cases, and many more. In this Databricks tutorial, we will understand the basic building blocks of the modern data technology stack, Databricks' role, architecture, use cases, advantages, and many more. Let's jump into the details.

Data & Traditional Systems

The amount of data generation has been growing at an alarming rate and businesses have to make use of this big data to stay competitive, find opportunities, make decisions, and a lot more. Typical businesses serve their customers with different products and services and all the data such as supplier information, sales data, marketing data, distribution data, etc need to be processed in real-time to support various departments.

The data engineering teams are responsible for collecting, cleansing, and storing data in data warehouse platforms. Using a traditional technology stack it takes days to weeks just to process information from a source without using Spark. Unlike other systems, Databricks process large volumes of data in real-time and supports typical business operations on the fly.

What is Databricks?

Databricks is a leading big data processing platform that processes huge volumes of data in real time. It acts as a powerful centralized data processing platform and brings all data processing technologies under one roof which includes ETL, BI, AI, ML, etc. Using Databricks organizations can source, store, clean, and visualize massive volumes of data. 

It allows easy integration between various data disciplines such as data engineering, analytics, and data science, and makes data processing very easier from the preparation stage to experimentation.

Databrisks can be deployed on top of major cloud providers such as AWS, Azure, and GCP. Its seamless integration process allows easy integration with diversified data sources, third-party solutions, developer tools, etc.

Want to become an Azure Databricks professional and get into a high-paying profession? Check out our Expert designed industry-oriented "Azure Databricks Training". This course will help you to achieve excellence in this domain.

 

How Databricks Work?

The common challenge today's organizations face is how to bring together and find value in big data that is coming from diversified sources. That's where Databricks steps in, it allows organizations to extract data from a wide range of sources, clean it, and made it available to BI, AI, and machine learning models. 

Databricks streamlines the process to build a modern cloud data warehouse for self-service analytics and offers high performance and governance. 

Databricks is a combination of four open-source tools that are combined into one single platform and delivered as a service from the cloud. Let's understand more about these four open-source platforms. 

  1. Apache Spark
  2. DeltaLake
  3. MLFlow
  4. Koalas

Related Article: Databricks Workspace 

Apache Spark:

Among the four open-source tools, Apache Spark is the core component of databricks and it is a big data processing engine. Spark is a powerful big data processing platform specialized in large-scale distributed processing on massive datasets. It utilizes optimized querying and in-memory caching for faster query execution on any dataset. The reason behind faster data processing is, it runs on memory (RAM) whereas other systems are on disk drives.

Apache Spark can be used for core things such as building data pipelines, running distributed SQL, running machine learning algorithms, ingesting data into a database, batch and real-time data processing, etc.

Delta Lake:

Delta Lake is another open-source component of Databricks that runs on lake house platforms to store data. It is an optimized default storage layer intended to store data, and tables in the Databricks lakehouse. 

Delta Lake can be easily integrated with Apache Spark APIs and handles structured streaming. Structured steaming supports both batch and streaming operations at scale. Moreover, it enhances the performance and manageability of data stored in cloud storage objects.

MLFlow:

MLFlow is another open-source framework of Databricks and manages the end-to-end lifecycle of machine learning applications and pipelines.

Data scientists are the people who look after ML operations in any enterprise and it is one of the most complex jobs in data science. They perform various tasks such as deploying ML models, running experiments, training algorithms, tracking, code packaging, and more. Managing all these operations, feeding the right data sources to ML algorithms, and getting reliable insights is a challenging tasks.

Databricks MLFlow simplifies the process for data scientists and offers core components such as Tracking, Models, Projects, Model Registry, Model Serving, security, high availability, model training, and many other options to make your ML project successful.

Kolas:

Pandas is one of the widely used packages by data scientists and offers various data structures and analysis tools. When it comes to big data processing there is some issue with pandas and are not easily scalable. Kolas fill this gap by delivering Scalable data structures that are compatible with apache spark.

Kolas not only replaces and is useful for pandas users but also helps Pyspark users perform complex operations. Moreover, It minimizes the learning curve for data scientists and improves productivity.

Databricks Features:

So far we have discussed the core aspects of the Databricks platform, now it's time to get to know about some of its core features and their role in simplifying big-data processing; Following are the some of the core Databricks features.

1) Multi-Language support

Databricks offers an interface called Notebook using which allows writing code in multiple languages. Notebook allows developers to build algorithms using any programming language such as Python, Scala, SQL, or R. For instance, model performance can be done using Python, model prediction by Scala, transformations using Spark SQL, visualization using R, etc. 

2) Collaborative Environment

Databricks offers a collaborative environment for data engineers, scientists, business analysts, etc to work on things and bring insights to the table. Moreover, it comes with built-in versioning features which allow users to easily track changes.   

3) Flexibility

Databricks is built on top of Apache Spark and is flexible enough to align with any cloud platform. It can handle small jobs such as development, testing, etc., and also executes big data jobs. It shutdown clutter if not in use and scales automatically when required.

4) Multi-Source Connection

Databricks can easily connect to cloud providers such as AWS, Google Cloud, and Azure, and also works with on-prem services such as SQL server, JSON, CSV, etc. It also connects to various file types and allows the developers to perform any analytical tasks on them.

Conclusion

With this, you may have a fair understanding of things like what Databricks is, its core components, features, and how it works. Very soon we are going to update this Databricks tutorial with many other concepts like Databricks architecture, Databricks use cases, applications, and a lot more. Moreover, Databricks has become one of the best and most efficient choices for companies because of its features and high flexibility to coordinate with multiple data engineering departments.
 

By Tech Solidity

Last updated on January 22, 2023